Saturday, 31 August 2013

Data Mining For Professional Service Firms - The Marketing Mother Lode May Already Be in Your Files

No one needs to tell you about the value of information in today's world--particularly the value of information that could help grow your practice. But has it occurred to you that you probably have more information in your head and your existing files that you realize? Tap into this gold mine of data to develop a powerful and effective marketing plan that will pull clients in the door and push your profitability up.

The way to do this is with data mining, which is the process of using your existing client data and demographics to highlight trends, make predictions and plan strategies.

In other words, do what other kinds of businesses have been doing for years: Analyze your clients by industry and size of business, the type and volume of services used, the amount billed, how quickly they pay and how profitable their business is to you. With this information, you'll be able to spot trends and put together a powerful marketing plan.

To data mine effectively, your marketing department needs access to client demographics and financial information. Your accounting department needs to provide numbers on the services billed, discounts given, the amounts actually collected, and receivables aging statistics. You may identify a specific service being utilized to a greater than average degree by a particular industry group, revealing a market segment worth pursuing. Or you may find an industry group that represents a significant portion of your billed revenue, but the business is only marginally profitable because of write-offs and discounts. In this case, you may want to shift your marketing focus.

You should also look at client revenues and profitability by the age of the clients. If your percentage of new clients is high, it could mean you're not retaining a sufficient number of existing clients. If you see too few new clients, you may be in for problems when natural client attrition is not balanced by new client acquisition.

The first step in effective data mining is to get everyone in the firm using the same information system. This allows everyone in the office who needs the names and addresses of the firm's clients and contacts to have access to that data. Require everyone to record notes on conversations and meetings in the system. Of course, the system should also accommodate information that users don't want to share, such as client's private numbers or the user's personal contacts. This way, everyone can utilize the system for everything, which makes them more likely to use it completely.

Your information system can be either contact information or customer relationship management software (a variety of packages are on the market) or you can have a system custom designed. When considering software to facilitate data mining, look at three key factors:

1. Ease of use. If the program isn't easy to use, it won't get used, and will end up being just a waste of time and money.

2. Accessibility. The system must allow for data to be accessible from anywhere, including laptops, hand-held devices, from the internet or cell phones. The data should also be accessible from a variety of applications so it can be used by everyone in the office all the time, regardless of where they are.

3. Sharability. Everyone needs to be able to access the information, but you also need privacy and editing rights so you can assign or restrict what various users can see and input.

Don't overlook the issue of information security. Beyond allowing people the ability to code certain entries as private, keep in mind that anyone with access to the system as the ability to either steal information or sabotage your operation. Talk to your software vendor about various security measures but don't let too much security make the system unusable. Protect yourself contractually with noncompete and nondisclosure agreements and be sure to back up your data regularly.

Finally, expect some staffers to resist when you ask them to change from the system they've been using. You may have to sell them on the benefits outweighing the pain of making a change and learning the new system--which means you need to be totally sold on it yourself. The managing partner, or the leader of the firm, needs to be driving this initiative for it to succeed. When it does succeed, you'll be able to focus your marketing dollars and efforts in the most profitable areas with the least expense, with a tremendous positive impact on the bottom line.



Source: http://ezinearticles.com/?Data-Mining-For-Professional-Service-Firms---The-Marketing-Mother-Lode-May-Already-Be-in-Your-Files&id=4607430

Friday, 30 August 2013

Data Mining Process - Why Outsource Data Mining Service?

Overview of Data Mining and Process:
Data mining is one of the unique techniques for investigating information to extract certain data patterns and decide to outcome of existing requirements. Data mining is widely use in client research, services analysis, market research and so on. It is totally based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

Information mining is mostly used by financial analyzer, business and professional organization and also there are many growing area of business that are get maximum advantages of data extract with use of data warehouses in their small to large level of businesses.

Most of functionalities which are used in information collecting process define as under:

* Retrieving Data

* Analyzing Data

* Extracting Data

* Transforming Data

* Loading Data

* Managing Databases

Most of small, medium and large levels of businesses are collect huge amount of data or information for analysis and research to develop business. Such kind of large amount will help and makes it much important whenever information or data required.

Why Outsource Data Online Mining Service?

Outsourcing advantages of data mining services:
o Almost save 60% operating cost
o High quality analysis processes ensuring accuracy levels of almost 99.98%
o Guaranteed risk free outsourcing experience ensured by inflexible information security policies and practices
o Get your project done within a quick turnaround time
o You can measure highly skilled and expertise by taking benefits of Free Trial Program.
o Get the gathered information presented in a simple and easy to access format

Thus, data or information mining is very important part of the web research services and it is most useful process. By outsource data extraction and mining service; you can concentrate on your co relative business and growing fast as you desire.

Outsourcing web research is trusted and well known Internet Market research organization having years of experience in BPO (business process outsourcing) field.

If you want to more information about data mining services and related web research services, then contact us.



Source: http://ezinearticles.com/?Data-Mining-Process---Why-Outsource-Data-Mining-Service?&id=3789102

Thursday, 29 August 2013

Data Entry Services Are The Core of Any Business

Data entry is the core of any business and though it may appear to be easy to manage and handle, this involves many processes that need to be dealt systematically. Huge changes have taken place in the field of data entry and due to this handling the work has become much easier then before. So if you want to make use of the best data entry services to maintain the data and other information about your company, you must be ready to spend money for this. It is in no way an attempt to say that data entry services are costly, but just to say that good services will not come that cheap either. You just need to decide if you will hire professionals to do this work in house or if you would like to hire the services from an outside firm. The business is your and you are the best person to decide what is suitable for your business.

Doing the data entry of any business in house can be advantageous and disadvantageous as well. The main advantage can be in the form that you can keep an eye on the work being done to maintain proper records of all aspects of your company. This can prove to be a bit costly to you as you will have to hire the services of a data entry operator. The employee will be on rolls and thus will be entitled to all the benefits like allowances and other bonuses. So another option that you can use for this is to get a third party handle the work for you. This is a better option as you can hire the services depending on the type of work you need to be done.

This is one of the core components of your business and consequently you must ensure that this is handled properly. Data entry services are not the only aspect that business owners are seeking out these days. With the huge surge in the field of information and technology data conversion is equally important. The need to convert the data that has been entered is gaining momentum day by day. Conversion of the data makes it more accessible and this can be used easily without too many hassles to draw customers for buying the goods. Traditional methods have been done away with and professionals who work for data entry services these days are highly skilled and in tune with the latest methods.

Data entry services done for a company by third party has been found to be very suitable. In fact studies have indicated that outsourcing data entry services is one the rise due to the high rate of success enjoyed by business owners for this. The main advantage of getting data entry services done by a third party is that it works out very cheap and the work done is of the top most quality. So if the data entry services of the best quality id provided there is absolutely no chance why someone would not undertake the process to increase and brighten business prospects.



Source: http://ezinearticles.com/?Data-Entry-Services-Are-The-Core-of-Any-Business&id=556117

Wednesday, 28 August 2013

Time Saving and Money Saving Data Entry Services

If you have an organization than data-entry is definitely the section with which you have to deal. The main concern for any organization which hires data entry services is flexibility and value for money. People need services which provide fast accurate entry of any form of hand-written data.

Data entry is very straight forward work but requires enough man force. As a result, many companies prefer to outsource data entry services to offshore countries. Company just have to find reliable data-entry partner from offshore countries which provides accurate data-entry services at most affordable prices.

As competition grows, many data-entry firms from offshore countries gives the most competitive prices for data-entry services. Outsourcing is not a new concept and having vast market doing outsourcing work. If you are looking for outsourcing data-entry work than India is the best outsourcing destination.

Many firms in India has enough experience with data entry projects which gives the best possible data-entry solutions from advanced data-entry tools. Daily, number of companies wants to move their paper documents into electronic format. All these firms in offshore countries give data entry services from qualified and well trained data-entry professionals. Their experienced and professional team of data-entry is highly trained in handling and obtaining large quantities of data in the minimal time possible. Outsourcing data entry and document processing work will save your valuable time and money. Utilizing this time and money you will be able to concentrate on your more important parts of your business leads you to high profit in best time.

Effective policies leads business to continue progress and survive them in today's highly competitive market. As in many cases, non-core activities are creating headaches in the path of progress, it is also an essential to finish them accurately as they provide assistance to core business.

So with choosing outsourcing less important data-entry work as a business strategy, allow you to create more attention on your core business activities.



Source: http://ezinearticles.com/?Time-Saving-and-Money-Saving-Data-Entry-Services&id=2908114

Monday, 26 August 2013

The Benefits of Data Mining

Data mining can truly help a business reach its fullest potential. It is a way to assess how business is being affected by certain characteristics, and can help business owners increase their profits and avoid making business mistakes down the line. Essentially, through this process, a business is analyzing certain data from different perspectives in order to get a full rounded view of how their company is doing. Business owners can get a broad perspective on things such as customer trending, where they are losing money and where they are making money. The information can also reveal ways that can help a business cut unneeded costs and can help them increase their overall income.

Data mining software is one tool that can help a company assess and analyze their data in more efficient terms. It can be extremely user friendly and allow people to delve into their data from a variety of different angles and points of view. In more technical terms, data mining software allows you to see the correlations and patterns of one's own data compared with those across many other regional databases.

People have been using data mining for many years in different formats. Only since the technology has become available has data software been used. But there have been many ways in the past for companies to assess their data and use it to their advantage. By taking polls, or using store scanners, product codes and bar codes, people have been able to gather data, analyze it and use it to their advantage. But it cannot be denied that the availability of greater technology has greatly increased the ability to store or gather data, make predictions about outcomes and use customer trend reports to greater advantages. The ability to store infinite amounts of data has given business owners a great advantage and truly has helped increase sales and lower costs. This data mining has actually led to data being stored in data warehouses. In data warehouses, various organizations will integrate their mined data into one large data warehouse. The information accessible in data warehouses is available to further help companies reduce risk taking and integrate proper selling techniques to improve business.

Data mining also can allow companies to see where their best selling points are and give them the opportunity to take advantage of this information. For example, if a pharmacy places a display of lip balm at the cashier counter, data mining can detect how many people bought lip balm from the cashier counter rather people who bought the lip balm when it was placed at another point in the store. Data mining can determine where the most effective points of sale are throughout a store or if a certain promotion went well one time of the month, but did not go well at another time of the month. Companies can make offers based on the buying habits of their customers as well.

Data mining can truly help businesses reach their highest profitability by paying attention to customer trending.



Source: http://ezinearticles.com/?The-Benefits-of-Data-Mining&id=4565509

Saturday, 24 August 2013

Data Mining - Techniques and Process of Data Mining

Data mining as the name suggest is extracting informative data from a huge source of information. It is like segregating a drop from the ocean. Here a drop is the most important information essential for your business, and the ocean is the huge database built up by you.

Recognized in Business

Businesses have become too creative, by coming up with new patterns and trends and of behavior through data mining techniques or automated statistical analysis. Once the desired information is found from the huge database it could be used for various applications. If you want to get involved into other functions of your business you should take help of professional data mining services available in the industry

Data Collection

Data collection is the first step required towards a constructive data-mining program. Almost all businesses require collecting data. It is the process of finding important data essential for your business, filtering and preparing it for a data mining outsourcing process. For those who are already have experience to track customer data in a database management system, have probably achieved their destination.

Algorithm selection

You may select one or more data mining algorithms to resolve your problem. You already have database. You may experiment using several techniques. Your selection of algorithm depends upon the problem that you are want to resolve, the data collected, as well as the tools you possess.

Regression Technique

The most well-know and the oldest statistical technique utilized for data mining is regression. Using a numerical dataset, it then further develops a mathematical formula applicable to the data. Here taking your new data use it into existing mathematical formula developed by you and you will get a prediction of future behavior. Now knowing the use is not enough. You will have to learn about its limitations associated with it. This technique works best with continuous quantitative data as age, speed or weight. While working on categorical data as gender, name or color, where order is not significant it better to use another suitable technique.

Classification Technique

There is another technique, called classification analysis technique which is suitable for both, categorical data as well as a mix of categorical and numeric data. Compared to regression technique, classification technique can process a broader range of data, and therefore is popular. Here one can easily interpret output. Here you will get a decision tree requiring a series of binary decisions.


Source: http://ezinearticles.com/?Data-Mining---Techniques-and-Process-of-Data-Mining&id=5302867

Friday, 23 August 2013

Why Outsourcing Data Mining Services?

Are huge volumes of raw data waiting to be converted into information that you can use? Your organization's hunt for valuable information ends with valuable data mining, which can help to bring more accuracy and clarity in decision making process.

Nowadays world is information hungry and with Internet offering flexible communication, there is remarkable flow of data. It is significant to make the data available in a readily workable format where it can be of great help to your business. Then filtered data is of considerable use to the organization and efficient this services to increase profits, smooth work flow and ameliorating overall risks.

Data mining is a process that engages sorting through vast amounts of data and seeking out the pertinent information. Most of the instance data mining is conducted by professional, business organizations and financial analysts, although there are many growing fields that are finding the benefits of using in their business.

Data mining is helpful in every decision to make it quick and feasible. The information obtained by it is used for several applications for decision-making relating to direct marketing, e-commerce, customer relationship management, healthcare, scientific tests, telecommunications, financial services and utilities.

Data mining services include:

    Congregation data from websites into excel database
    Searching & collecting contact information from websites
    Using software to extract data from websites
    Extracting and summarizing stories from news sources
    Gathering information about competitors business

In this globalization era, handling your important data is becoming a headache for many business verticals. Then outsourcing is profitable option for your business. Since all projects are customized to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure can be realized.

Advantages of Outsourcing Data Mining Services:

    Skilled and qualified technical staff who are proficient in English
    Improved technology scalability
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

Outsourcing will help you to focus on your core business operations and thus improve overall productivity. So data mining outsourcing is become wise choice for business. Outsourcing of this services helps businesses to manage their data effectively, which in turn enable them to achieve higher profits.




Source: http://ezinearticles.com/?Why-Outsourcing-Data-Mining-Services?&id=3066061

Thursday, 22 August 2013

Database Mining

The term database mining refers to the process of extracting information from a set database and transforming that into understandable information. The data mining process is also known as data dredging or data snooping. The consumer focused companies into retail, financial, communication, and marketing fields are using data mining for cost reduction and increase revenues. This process is the powerful technology, which helps the organisations to focus on the most important and relevant information from their collected data. Organisations can easily understand the potential customers and their behaviour with this process. By predicting behaviours of future trends the recruitment process outsourcing firms assists the multiple organisations to make proactive and profitable decisions in their business. The database mining term is originated from the similarities between searching for valuable information in large databases and mining a mountain for a vein of valuable crystal.

Recruitment process outsourcing firm helps the organisation for the betterment of their future by analyzing the data from distinctive dimensions or angles. From the business point of view, the data mining and data entry services leads the organisation to increase their profitability and customer demands. Data mining process is must for every organisation to survive in the competitive market and quality assurance. Now a day the data mining services are actively utilised and adapted by many organisations to achieve great success and analyse competitor growth, profit analysis, budget, and sales etc. The data mining is a form of artificial intelligence that uses the automated process to find required information. You can easily and swiftly plan your business strategy for the future by finding and collecting the equivalent information from huge data.

With the advanced analytics and modern techniques, the database mining process uncovers the in-depth business intelligence. You can ask for the certain information and let this process provide you information, which can lead to an immense improvement in your business and quality. Every organisation holds a huge amount of data in their database. Due to rapid computerisation of business, the large amount of data gets produced by every organisation and then database mining comes in the picture. When there are problems arising and challenges addressing in the database management of your organisation, the fundamental usage of data mining will help you out with maximum returns. Thus, from the strategic point of view, the rapidly growing world of digital data will depend on the ability of mining and managing the data.



Source: http://ezinearticles.com/?Database-Mining&id=7292341

Tuesday, 20 August 2013

Data Mining in the 21st Century: Business Intelligence Solutions Extract and Visualize

When you think of the term data mining, what comes to mind? If an image of a mine shaft and miners digging for diamonds or gold comes to mind, you're on the right track. Data mining involves digging for gems or nuggets of information buried deep within data. While the miners of yesteryear used manual labor, modern data minors use business intelligence solutions to extract and make sense of data.

As businesses have become more complex and more reliant on data, the sheer volume of data has exploded. The term "big data" is used to describe the massive amounts of data enterprises must dig through in order to find those golden nuggets. For example, imagine a large retailer with numerous sales promotions, inventory, point of sale systems, and a gift registry. Each of these systems contains useful data that could be mined to make smarter decisions. However, these systems may not be interlinked, making it more difficult to glean any meaningful insights.

Data warehouses are used to extract information from various legacy systems, transform the data into a common format, and load it into a data warehouse. This process is known as ETL (Extract, Transform, and Load). Once the information is standardized and merged, it becomes possible to work with that data.

Originally, all of this behind-the-scenes consolidation took place at predetermined intervals such as once a day, once a week, or even once a month. Intervals were often needed because the databases needed to be offline during these processes. A business running 24/7 simply couldn't afford the down time required to keep the data warehouse stocked with the freshest data. Depending on how often this process took place, the data could be old and no longer relevant. While this may have been fine in the 1980s or 1990s, it's not sufficient in today's fast-paced, interconnected world.

Real-time EFL has since been developed, allowing for continuous, non-invasive data warehousing. While most business intelligence solutions today are capable of mining, extracting, transforming, and loading data continuously without service disruptions, that's not the end of the story. In fact, data mining is just the beginning.

After mining data, what are you going to do with it? You need some form of enterprise reporting in order to make sense of the massive amounts of data coming in. In the past, enterprise reporting required extensive expertise to set up and maintain. Users were typically given a selection of pre-designed reports detailing various data points or functions. While some reports may have had some customization built in, such as user-defined date ranges, customization was limited. If a user needed a special report, it required getting someone from the IT department skilled in reporting to create or modify a report based on the user's needs. This could take weeks - and it often never happened due to the hassles and politics involved.

Fortunately, modern business intelligence solutions have taken enterprise reporting down to the user level. Intuitive controls and dashboards make creating a custom report a simple matter of drag and drop while data visualization tools make the data easy to comprehend. Best of all, these tools can be used on demand, allowing for true, real-time ad hoc enterprise reporting.



Source: http://ezinearticles.com/?Data-Mining-in-the-21st-Century:-Business-Intelligence-Solutions-Extract-and-Visualize&id=7504537

Saturday, 17 August 2013

Data Mining Process - Why Outsource Data Mining Service?

Overview of Data Mining and Process:
Data mining is one of the unique techniques for investigating information to extract certain data patterns and decide to outcome of existing requirements. Data mining is widely use in client research, services analysis, market research and so on. It is totally based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

Information mining is mostly used by financial analyzer, business and professional organization and also there are many growing area of business that are get maximum advantages of data extract with use of data warehouses in their small to large level of businesses.

Most of functionalities which are used in information collecting process define as under:

* Retrieving Data

* Analyzing Data

* Extracting Data

* Transforming Data

* Loading Data

* Managing Databases

Most of small, medium and large levels of businesses are collect huge amount of data or information for analysis and research to develop business. Such kind of large amount will help and makes it much important whenever information or data required.

Why Outsource Data Online Mining Service?

Outsourcing advantages of data mining services:
o Almost save 60% operating cost
o High quality analysis processes ensuring accuracy levels of almost 99.98%
o Guaranteed risk free outsourcing experience ensured by inflexible information security policies and practices
o Get your project done within a quick turnaround time
o You can measure highly skilled and expertise by taking benefits of Free Trial Program.
o Get the gathered information presented in a simple and easy to access format

Thus, data or information mining is very important part of the web research services and it is most useful process. By outsource data extraction and mining service; you can concentrate on your co relative business and growing fast as you desire.

Outsourcing web research is trusted and well known Internet Market research organization having years of experience in BPO (business process outsourcing) field.

If you want to more information about data mining services and related web research services, then contact us.



Source: http://ezinearticles.com/?Data-Mining-Process---Why-Outsource-Data-Mining-Service?&id=3789102

Thursday, 15 August 2013

Offshore Data Entry Work in India

Data entry services are helpful to improve performance standards of any kind of businesses, whether it is a small firm or big organization. These services allow us to increase the rhythm of our business activities and operations with higher speed. By doing this, we can save our time, money and furthermore data entry services provide us many other competitive advantages.

Data entry services play important role in today's Business Industries as they include many important professional and business services e.g. offshore data entry, data conversion services, online data entry, offline data entry, document and image processing, image entry, Insurance Claim Entry, Offline and Online Data Conversion Jobs, offline as well as online data entry jobs.

Now looking at data conversion services and benefits of it. The need for data conversion is essential for any business organization or firm to run their business effectively. Data conversion services can be defined as the translation of data from one format to another. Data stored in an earlier system is imported into a newer one. Data Conversion Services can range from a simple one for one import to a complex procedure where non-relational data needs to be imported, validated, cleansed and split up into multiple tables in a new relational database structure.

Some services that data conversion includes are:

* Document Conversion

* XML Conversion

* HTML Conversion

* SGML Conversion

* CAD Conversion

* Catalog Conversion

* Book Conversion

* PDF Conversion

Now let's come on Data processing. Irrespective of company, whether it's a small company or bigger organization, it's very useful. It is not just about the process of implementing the data or say information in the right place at the right time; it also covers a range of various methods for how data is processed and to what limit data is going to give the best of results for your company or business organizations.

Various types of data processing services are: Data mining, Data cleansing, Check processing, Image processing, Form processing, OCR clean up, Insurance claim processing, Survey processing. These data processing services are helpful in streamlining a wide range of corporate activities and operations. Data processing and related other services are not only good to present the full and processed data that is to be used for the overall benefit rather their primary function is to present an insightful explanation of the data.



Source: http://ezinearticles.com/?Offshore-Data-Entry-Work-in-India&id=1038279

Tuesday, 13 August 2013

Know What the Truth Behind Data Mining Outsourcing Service

We came to that, what we call the information age where industries are like useful data needed for decision-making, the creation of products - among other essential uses for business. Information mining and converting them to useful information is a part of this trend that allows companies to reach their optimum potential. However, many companies that do not meet even one deal with data mining question because they are simply overwhelmed with other important tasks. This is where data mining outsourcing comes in.

There have been many definitions to introduced, but it can be simply explained as a process that involves sorting through large amounts of raw data to extract valuable information needed by industries and enterprises in various fields. In most cases this is done by professionals, professional organizations and financial analysts. He has seen considerable growth in the number of sectors or groups that enter my self.
There are a number of reasons why there is a rapid growth in data mining outsourcing service subscriptions. Some of them are presented below:

A wide range of services

Many companies are turning to information mining outsourcing, because they cover a wide range of services. These services include, but are not limited to data from web applications congregation database, collect contact information from different sites, extract data from websites using the software, the sort of stories from sources news, information and accumulate commercial competitors.

Many companies fall

Many industries benefit because it is fast and realistic. The information extracted by data mining service providers of outsourcing used in crucial decisions in the field of direct marketing, e-commerce, customer relationship management, health, scientific tests and other experimental work, telecommunications, financial services, and a whole lot more.

A lot of advantages

Subscribe data mining outsourcing services it's offers many benefits, as providers assures customers to render services to world standards. They strive to work with improved technologies, scalability, sophisticated infrastructure, resources, timeliness, cost, the system safer for the security of information and increased market coverage.

Outsourcing allows companies to focus their core business and can improve overall productivity. Not surprisingly, information mining outsourcing has been a first choice of many companies - to propel the business to higher profits.



Source: http://ezinearticles.com/?Know-What-the-Truth-Behind-Data-Mining-Outsourcing-Service&id=5303589

Monday, 12 August 2013

Digging Up Dollars With Data Mining - An Executive's Guide

Traditionally, organizations use data tactically - to manage operations. For a competitive edge, strong organizations use data strategically - to expand the business, to improve profitability, to reduce costs, and to market more effectively. Data mining (DM) creates information assets that an organization can leverage to achieve these strategic objectives.

In this article, we address some of the key questions executives have about data mining. These include:

    What is data mining?
    What can it do for my organization?
    How can my organization get started?

Business Definition of Data Mining

Data mining is a new component in an enterprise's decision support system (DSS) architecture. It complements and interlocks with other DSS capabilities such as query and reporting, on-line analytical processing (OLAP), data visualization, and traditional statistical analysis. These other DSS technologies are generally retrospective. They provide reports, tables, and graphs of what happened in the past. A user who knows what she's looking for can answer specific questions like: "How many new accounts were opened in the Midwest region last quarter," "Which stores had the largest change in revenues compared to the same month last year," or "Did we meet our goal of a ten-percent increase in holiday sales?"

We define data mining as "the data-driven discovery and modeling of hidden patterns in large volumes of data." Data mining differs from the retrospective technologies above because it produces models - models that capture and represent the hidden patterns in the data. With it, a user can discover patterns and build models automatically, without knowing exactly what she's looking for. The models are both descriptive and prospective. They address why things happened and what is likely to happen next. A user can pose "what-if" questions to a data-mining model that can not be queried directly from the database or warehouse. Examples include: "What is the expected lifetime value of every customer account," "Which customers are likely to open a money market account," or "Will this customer cancel our service if we introduce fees?"

The information technologies associated with DM are neural networks, genetic algorithms, fuzzy logic, and rule induction. It is outside the scope of this article to elaborate on all of these technologies. Instead, we will focus on business needs and how data mining solutions for these needs can translate into dollars.

Mapping Business Needs to Solutions and Profits

What can data mining do for your organization? In the introduction, we described several strategic opportunities for an organization to use data for advantage: business expansion, profitability, cost reduction, and sales and marketing. Let's consider these opportunities very concretely through several examples where companies successfully applied DM.

Expanding your business: Keystone Financial of Williamsport, PA, wanted to expand their customer base and attract new accounts through a LoanCheck offer. To initiate a loan, a recipient just had to go to a Keystone branch and cash the LoanCheck. Keystone introduced the $5000 LoanCheck by mailing a promotion to existing customers.

The Keystone database tracks about 300 characteristics for each customer. These characteristics include whether the person had already opened loans in the past two years, the number of active credit cards, the balance levels on those cards, and finally whether or not they responded to the $5000 LoanCheck offer. Keystone used data mining to sift through the 300 customer characteristics, find the most significant ones, and build a model of response to the LoanCheck offer. Then, they applied the model to a list of 400,000 prospects obtained from a credit bureau.

By selectively mailing to the best-rated prospects determined by the DM model, Keystone generated $1.6M in additional net income from 12,000 new customers.

Reducing costs: Empire Blue Cross/Blue Shield is New York State's largest health insurer. To compete with other healthcare companies, Empire must provide quality service and minimize costs. Attacking costs in the form of fraud and abuse is a cornerstone of Empire's strategy, and it requires considerable investigative skill as well as sophisticated information technology.

The latter includes a data mining application that profiles each physician in the Empire network based on patient claim records in their database. From the profile, the application detects subtle deviations in physician behavior relative to her/his peer group. These deviations are reported to fraud investigators as a "suspicion index." A physician who performs a high number of procedures per visit, charges 40% more per patient, or sees many patients on the weekend would be flagged immediately from the suspicion index score.

What has this DM effort returned to Empire? In the first three years, they realized fraud-and-abuse savings of $29M, $36M, and $39M respectively.

Improving sales effectiveness and profitability: Pharmaceutical sales representatives have a broad assortment of tools for promoting products to physicians. These tools include clinical literature, product samples, dinner meetings, teleconferences, golf outings, and more. Knowing which promotions will be most effective with which doctors is extremely valuable since wrong decisions can cost the company hundreds of dollars for the sales call and even more in lost revenue.

The reps for a large pharmaceutical company collectively make tens of thousands of sales calls. One drug maker linked six months of promotional activity with corresponding sales figures in a database, which they then used to build a predictive model for each doctor. The data-mining models revealed, for instance, that among six different promotional alternatives, only two had a significant impact on the prescribing behavior of physicians. Using all the knowledge embedded in the data-mining models, the promotional mix for each doctor was customized to maximize ROI.

Although this new program was rolled out just recently, early responses indicate that the drug maker will exceed the $1.4M sales increase originally projected. Given that this increase is generated with no new promotional spending, profits are expected to increase by a similar amount.

Looking back at this set of examples, we must ask, "Why was data mining necessary?" For Keystone, response to the loan offer did not exist in the new credit bureau database of 400,000 potential customers. The model predicted the response given the other available customer characteristics. For Empire, the suspicion index quantified the differences between physician practices and peer (model) behavior. Appropriate physician behavior was a multi-variable aggregate produced by data mining - once again, not available in the database. For the drug maker, the promotion and sales databases contained the historical record of activity. An automated data mining method was necessary to model each doctor and determine the best combination of promotions to increase future sales.

Getting Started

In each case presented above, data mining yielded significant benefits to the business. Some were top-line results that increased revenues or expanded the customer base. Others were bottom-line improvements resulting from cost-savings and enhanced productivity. The natural next question is, "How can my organization get started and begin to realize the competitive advantages of DM?"

In our experience, pilot projects are the most successful vehicles for introducing data mining. A pilot project is a short, well-planned effort to bring DM into an organization. Good pilot projects focus on one very specific business need, and they involve business users up front and throughout the project. The duration of a typical pilot project is one to three months, and it generally requires 4 to 10 people part-time.

The role of the executive in such pilot projects is two-pronged. At the outset, the executive participates in setting the strategic goals and objectives for the project. During the project and prior to roll out, the executive takes part by supervising the measurement and evaluation of results. Lack of executive sponsorship and failure to involve business users are two primary reasons DM initiatives stall or fall short.

In reading this article, perhaps you've developed a vision and want to proceed - to address a pressing business problem by sponsoring a data mining pilot project. Twisting the old adage, we say "just because you should doesn't mean you can." Be aware that a capability assessment needs to be an integral component of a DM pilot project. The assessment takes a critical look at data and data access, personnel and their skills, equipment, and software. Organizations typically underestimate the impact of data mining (and information technology in general) on their people, their processes, and their corporate culture. The pilot project provides a relatively high-reward, low-cost, and low-risk opportunity to quantify the potential impact of DM.

Another stumbling block for an organization is deciding to defer any data mining activity until a data warehouse is built. Our experience indicates that, oftentimes, DM could and should come first. The purpose of the data warehouse is to provide users the opportunity to study customer and market behavior both retrospectively and prospectively. A data mining pilot project can provide important insight into the fields and aggregates that need to be designed into the warehouse to make it really valuable. Further, the cost savings or revenue generation provided by DM can provide bootstrap funding for a data warehouse or related initiatives.

Recapping, in this article we addressed the key questions executives have about data mining - what it is, what the benefits are, and how to get started. Armed with this knowledge, begin with a pilot project. From there, you can continue building the data mining capability in your organization; to expand your business, improve profitability, reduce costs, and market your products more effectively.



Source: http://ezinearticles.com/?Digging-Up-Dollars-With-Data-Mining---An-Executives-Guide&id=6052872

Saturday, 10 August 2013

Data Scrapping

People who are involved in business activities might have came across a term Data Scrapping. It is a process in which data or information can be extracted from the Portable Document Format file. They are easy to use tools that can automatically arrange the data that are found in different format in the internet. These advanced tools can collect useful information's according to the need of the user. What the user needs to do is simply enter the key words or phrases and the tool will extract all the related information available from the Portable Document Format file. It is widely used to take information's from the no editable format.

The main advantage of Portable Document Format files are they protect the originality of the document when you convert the data from Word to PDF. The size of the file is reduced by compression algorithems when the file are heavier due to the graphics or the images in the content. A Portable Document Format is independent of any software or hardware for installation. It allows encryption of files which enhances the security of your contents.

Although the Portable Document Format files have many advantages,it too have many other challenges. For example, you want to access a data that you found on the internet and the author encrypted the file preventing you from printing the file, you can easily do the scrapping process. These functions are easily available on the internet and the user can choose according to their needs. Using these programs you can extract the data that u need.



Source: http://ezinearticles.com/?Data-Scrapping&id=4951020

Thursday, 8 August 2013

Data Mining Questions? Some Back-Of-The-Envelope Answers

Data mining, the discovery and modeling of hidden patterns in large volumes of data, is becoming a mainstream technology. And yet, for many, the prospect of initiating a data mining (DM) project remains daunting. Chief among the concerns of those considering DM is, "How do I know if data mining is right for my organization?"

A meaningful response to this concern hinges on three underlying questions:

    Economics - Do you have a pressing business/economic need, a "pain" that needs to be addressed immediately?
    Data - Do you have, or can you acquire, sufficient data that are relevant to the business need?
    Performance - Do you need a DM solution to produce a moderate gain in business performance compared to current practice?

By the time you finish reading this article, you will be able to answer these questions for yourself on the back of an envelope. If all answers are yes, data mining is a good fit for your business need. Any no answers indicate areas to focus on before proceeding with DM.

In the following sections, we'll consider each of the above questions in the context of a sales and marketing case study. Since DM applies to a wide spectrum of industries, we will also generalize each of the solution principles.

To begin, suppose that Donna is the VP of Marketing for a trade organization. She is responsible for several trade shows and a large annual meeting. Attendance was good for many years, and she and her staff focused their efforts on creating an excellent meeting experience (program plus venue). Recently, however, there has been declining response to promotions, and a simultaneous decline in attendance. Is data mining right for Donna and her organization?

Economics - Begin with economics - Is there a pressing business need? Donna knows that meeting attendance was down 15% this year. If that trend continues for two more years, turnout will be only about 60% of its previous level (85% x 85% x 85%), and she knows that the annual meeting is not sustainable at that level. It is critical, then, to improve the attendance, but to do so profitably. Yes, Donna has an economic need.

Generally speaking, data mining can address a wide variety of business "pains". If your company is experiencing rapid growth, DM can identify promising new retail locations or find more prospects for your online service. Conversely, if your organization is facing declining sales, DM can improve retention or identify your best existing customers for cross-selling and upselling. It is not advisable, however, to start a data mining effort without explicitly identifying a critical business need. Vast sums have been spent wastefully on mining data for "nuggets" of knowledge that have little or no value to the enterprise.

Data - Next, consider your data assets - Are sufficient, relevant data available? Donna has a spreadsheet that captures several years of meeting registrations (who attended). She also maintains a promotion history (who was sent a meeting invitation) in a simple database. So, information is available about the stimulus (sending invitations) and the response (did/did not attend). This data is clearly relevant to understanding and improving future attendance.

Donna's multi-year registration spreadsheet contains about 10,000 names. The promotion history database is even larger because many invitations are sent for each meeting, both to prior attendees and to prospects who have never attended. Sounds like plenty of data, but to be sure, it is useful to think about the factors that might be predictive of future attendance. Donna consults her intuitive knowledge of the meeting participants and lists four key factors:

    attended previously
    age
    size of company
    industry

To get a reasonable estimate for the amount of data required, we can use the following rule of thumb, developed from many years of experience:

Number of records needed ≥ 60 x 2^N (where N is the number of factors)

Since Donna listed 4 key factors, the above formula estimates that she needs 960 records (60 x 2^4 = 60 x 16). Since she has more than 10,000, we conclude Yes, Donna has relevant and sufficient data for DM.

More generally, in considering your own situation, it is important to have data that represents:

    stimulus and response (what was done and what happened)
    positive and negative outcomes

Simply put, you need data on both what works and what doesn't.

Performance - Finally, performance - Is a moderate improvement required relative to current benchmarks? Donna would like to increase attendance back to its previous level without increasing her promotion costs. She determines that the response rate to promotions needs to increase from 2% to 2.5% to meet her goals. In data mining terms, a moderate improvement is generally in the range of 10% to 100%. Donna's need is in this interval, at 25%. For her, Yes, a moderate performance increase is needed.

The performance question is typically the hardest one to address prior to starting a project. Performance is an outcome of the data mining effort, not a precursor to it. There are no guarantees, but we can use past experience as a guide. As noted for Donna above, incremental-to-moderate improvements are reasonable to expect with data mining. But don't expect DM to produce a miracle.

Conclusion

Summarizing, to determine if data mining fits your organization, you must consider:

    your business need
    your available data assets
    the performance improvement required

In the case study, Donna answered yes to each of the questions posed. She is well-positioned to proceed with a data mining project. You, too, can apply the same thought process before you spend a single dollar on DM. If you decide there is a fit, this preparation will serve you well in talking with your staff, vendors, and consultants who can help you move a data mining project forward.


Source: http://ezinearticles.com/?Data-Mining-Questions?-Some-Back-Of-The-Envelope-Answers&id=6047713

Tuesday, 6 August 2013

Data Mining and Financial Data Analysis

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent, proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

ProfitSystem fx Profit Driver by CCH Tax and Accounting provides a wide range of financial diagnostics and analytics. It provides data in spreadsheet form and can calculate benchmarking against industry standards. The program can track up to 40 periods.



Source: http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Monday, 5 August 2013

Data Entry Services in India Are Getting Famous in the World!

Outsourcing has become the most profitable business in the world. This business is growing in India and other part of the world. These services are getting famous in the world and most of the business owners are saving their lots of money by doing outsourcing to different countries where India comes in top in the outsourcing. By outsourcing your offline and online information entry jobs, your company will maintain properly organized and up-to-date records of the employees and other important stuff. These jobs are usually done in the home environment.

India is very popular in providing the BPO services for their customers. There is large scale of BPO service providers running their business in India. The employees working in these offices are also very competent and trained. Data entry services in India is very popular all around the world because of having the access of BPO experts and the web data extraction experts.

What these BPO services provide you?

There are many business across the globe running on the outsource services, BPO services in India provides the ease of life to the business owner want quick and fast data entry work.

There are many well reputed firms working in India and doing their best to finish and deliver comes punctually. They're professional well equipped with the newest technology and software and more importantly with the professional labor work. They are fully trained and expert in their niche so if a business owner take the services then they get the in time work and quality. When you will select any BPO expert then you will find the following data entry expertise in these professional companies.

1. You will find the handwritten material with the help of experts.
2. Knowledge entry of e-books, directories, image files and etc.
3. You will also get the best services of data processing.
4. Business card knowledge entry
5. Bills and survey services which will help you to Maintain and correct records.
6. Alpha numeric data entry services
7. Data entry free trails.

Thousand of online BPO jobs are also available on the Indian big job portals and other data entry work. These services and work force reduce your workload and will enhance your productivity of your business. Outsourcing the right choice by any business owner because it reduces your total cost and you get the perfect and reliable work. When you approach to any professional service provider firm in India then it reduce the turnaround time and you get the professional data entry services.



Source: http://ezinearticles.com/?Data-Entry-Services-in-India-Are-Getting-Famous-in-the-World!&id=4708858

Saturday, 3 August 2013

Outsourcing Data Entry Work

As the business world develops quickly, more and more companies are unable to manage large quantities of data coming fast and furious day in day out. They need to spend time and effort on other important issues related to their businesses instead of wasting all just on data entry.

So what they did next is to outsource those work to specialized companies and freelance individuals who will be keen to take over.

By outsourcing, they would be relieved greatly from the pressure of handling all those workload and focus on immediate tasks like marketing strategies, promotion, customer follow-up and support.

Moreover, outsourcing is cheaper and less time consuming from conventional recruitment which they ended up spending more money and time teaching the newcomers and making sure they understand quickly.

It is also the best option for all business needs requiring advanced pool of talent. Such as experienced and skilled professionals who would have no problem handling all related tasks entrusted by companies.

Now that full training is provided by companies, the client companies can be relieved from of training the employees again and again just to make sure they understand completely before entrusting the work to them.

Outsourcing data entry work also helps them to track down and update all incoming latest data 24 hours a day and 365 days a year on autopilot. Because of this, there is no limit as to how much work the client companies can outsource so long as they have the affordability and trust whoever they outsource to do a great job.

The most common work outsourced so far are bills, legal documents, invoices, manuals, medical billing, payroll, research reports, surveys, tax forms etc.

Most data processing companies have safety measures such as double keying process which involves rekeying data into different file formats. After which, the files are compared electronically with each other to provide accurate results to clients.

Henceforth selecting a legitimate company for outsourcing would help the companies get relief from most of the data processing problems.

Some companies are quite versatile in data processing and are more than willing to help clients in handling their projects irregardless of race and language.

Speaking of which, it is one of the main reasons for outsourcing being popular among clients to those companies. It also enables them to get the necessary output in their desired online format like CD-R, CD-RW, FTP just to name a few.

Apart from versatility, they have up-to-date technologies based on the current trends in relevant industry. These will get all the outsourced work accomplished quickly, flawlessly and easily.

As of today, outsourcing to developing countries is pretty common. This helps clients achieve their desired output for comparative lesser amount.

Just because those countries are developing does not mean the people are low standard in qualities. They are highly committed and well-trained to perform just as well as those in developed countries. The only difference is they are willing to accept lower rates and still deliver high quality work.

Overall, choosing a reliable company to outsource your work is a perfect solution to cut costs, get things done faster and free up your time on other things.


Source: http://ezinearticles.com/?Outsourcing-Data-Entry-Work&id=5376156

Thursday, 1 August 2013

The Need for Specialised Data Mining Techniques for Web 2.0

Web 2.0 is not exactly a new version of the Web, but rather a way to describe a new generation of interactive websites centred on the user. These are websites that offer

interactive information sharing, as well as collaboration - a case in point being wikis and blogs - and is now expanding to other areas as well. These new sites are the result of new technologies and new ideas and are on the cutting edge of Web development. Due to their novelty, they create a rather interesting challenge for data mining.

Data mining is simply a process of finding patterns in masses of data. There is such a vast plethora of information out there on the Web that it is necessary to use data mining tools to make sense of it. Traditional data mining techniques are not very effective when used on these new Web 2.0 sites because the user interface is so varied. Since Web 2.0 sites are created largely by user-supplied content, there is even more data to mine for valuable information. Having said that, the additional freedom in the format ensures that it is much more difficult to sift through the content to find what is usable.The data available is very valuable, so where there is a new platform, there must be new techniques developed for mining the data. The trick is that the data mining methods must themselves be flexible as the sites they are targeting are flexible. In the initial days of the World Wide Web, which was referred to as Web 1.0, data mining programs knew where to look for the desired information. Web 2.0 sites lack structure, meaning there is no single spot for the mining program to target. It must be able to scan and sift through all of the user-generated content to find what is needed. The upside is that there is a lot more data out there, which means more and more accurate results if the data can be properly utilized. The downside is that with all that data, if the selection criteria are not specific enough, the results will be meaningless. Too much of a good thing is definitely a bad thing. Wikis and blogs have been around long enough now that enough research has been carried out to understand them better. This research can now be used, in turn, to devise the best possible data mining methods. New algorithms are being developed that will allow data mining applications to analyse this data and return useful. Another problem is that there are many cul-de-sacs on the internet now, where groups of people share information freely, but only behind walls/barriers that keep it away from the genera results.

The main challenge in developing these algorithms does not lie with finding the data, because there is too much of it. The challenge is filtering out irrelevant data to get to the meaningful one. At this point none of the techniques are perfected. This makes Web 2.0 data mining an exciting and frustrating field, and yet another challenge in the never ending series of technological hurdles that have stemmed from the internet. There are numerous problems to overcome. One is the inability to rely on keywords, which used to be the best method to search. This does not allow for an understanding of context or sentiment associated with the keywords which can drastically vary the meaning of the keyword population. Social networking sites are a good example of this, where you can share information with everyone you know, but it is more difficult for that information to proliferate outside of those circles. This is good in terms of protecting privacy, but it does not add to the collective knowledge base and it can lead to a skewed understanding of public sentiment based on what social structures you have entry into. Attempts to use artificial intelligence have been less than successful because it is not adequately focused in its methodology. Data mining depends on the collection of data and sorting the results to create reports on the individual metrics that are the focus of interest. The size of the data sets are simply too large for traditional computational techniques to be able to tackle them. That is why a new answer needs to be found. Data mining is an important necessity for managing the backhaul of the internet. As Web 2.0 grows exponentially, it is increasingly hard to keep track of everything that is out there and summarize and synthesize it in a useful way. Data mining is necessary for companies to be able to really understand what customers like and want so that they can create products to meet these needs. In the increasingly aggressive global market, companies also need the reports resulting from data mining to remain competitive. If they are unable to keep track of the market and stay abreast of popular trends, they will not survive. The solution has to come from open source with options to scale databases depending on needs. There are companies that are now working on these ideas and are sharing the results with others to further improve them. So, just as open source and collective information sharing of Web 2.0 created these new data mining challenges, it will be the collective effort that solves the problems as well.

It is important to view this as a process of constant improvement, not one where an answer will be absolute for all time. Since its advent, the internet has changed quite significantly as well as the way users interact with it. Data mining will always be a critical part of corporate internet usage and its methods will continue to evolve just as the Web and its content does.

There is a huge incentive for creating better data mining solutions to tackle the complexities of Web 2.0. For this reason, several companies exist just for the purpose of analysing and creating solutions to the data mining problem. They find eager buyers for their applications in companies which are desperate for information on markets and potential customers. The companies in question do not simply want more data, they want better data. This requires a system that can classify and group data, and then make sense of the results.While the data mining process is expensive to start with, it is well worth for a retail company because it provides insight into the market and thus enables quick decisions.The speed at which a company which has insightful information on the marketplace can react to changes, gives it a huge advantage over the competition. Not only can the company react quickly, it is likely to steer itself in the right direction if its information is based on updated data.Advanced data mining will allow companies not only to make snap decisions, but also to plan long range strategies, based on the direction the marketplace is heading. Data mining brings the company closer to its customers. The real winners here, are the companies that have now discovered that they can make a living by improving the existing data mining techniques. They have filled a niche that was only created recently, which no one could have foreseen and have done quite a, good job at it.


Source: http://ezinearticles.com/?The-Need-for-Specialised-Data-Mining-Techniques-for-Web-2.0&id=7412130

Data Mining As a Process

The data mining process is also known as knowledge discovery. It can be defined as the process of analyzing data from different perspectives and then summarizing the data into useful information in order to improve the revenue and cut the costs. The process enables categorization of data and the summary of the relationships is identified. When viewed in technical terms, the process can be defined as finding correlations or patterns in large relational databases. In this article, we look at how data mining works its innovations, the needed technological infrastructures and the tools such as phone validation.

Data mining is a relatively new term used in the data collection field. The process is very old but has evolved over the time. Companies have been able to use computers to shift over the large amounts of data for many years. The process has been used widely by the marketing firms in conducting market research. Through analysis, it is possible to define the regularity of customers shopping. How the items are bought. It is also possible to collect information needed for the establishment of revenue increase platform. Nowadays, what aides the process is the affordable and easy disk storage, computer processing power and applications developed.

Data extraction is commonly used by the companies that are after maintaining a stronger customer focus no matter where they are engaged. Most companies are engaged in retail, marketing, finance or communication. Through this process, it is possible to determine the different relationships between the varying factors. The varying factors include staffing, product positioning, pricing, social demographics, and market competition.

A data-mining program can be used. It is important note that the data mining applications vary in types. Some of the types include machine learning, statistical, and neural networks. The program is interested in any of the following four types of relationships: clusters (in this case the data is grouped in relation to the consumer preferences or logical relationships), classes (in this the data is stored and finds its use in the location of data in the per-determined groups), sequential patterns (in this case the data is used to estimate the behavioral patterns and patterns), and associations (data is used to identify associations).

In knowledge discovery, there are different levels of data analysis and they include genetic algorithms, artificial neural networks, nearest neighbor method, data visualization, decision trees, and rule induction. The level of analysis used depends on the data that is visualized and the output needed.

Nowadays, data extraction programs are readily available in different sizes from PC platforms, mainframe, and client/server. In the enterprise-wide uses, size ranges from the 10 GB to more than 11 TB. It is important to note that two crucial technological drivers are needed and are query complexity and, database size. When more data is needed to be processed and maintained, then a more powerful system is needed that can handle complex and greater queries.

With the emergence of professional data mining companies, the costs associated with process such as web data extraction, web scraping, web crawling and web data mining have greatly being made affordable.


Source: http://ezinearticles.com/?Data-Mining-As-a-Process&id=7181033